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ABSTRACT

Studies of strongly nonlinear dynamical systems such as turbulent flows call for superior computational prowess.
With the advent of quantum computing (QC), a plethora of quantum algorithms have demonstrated, both theo-
retically and experimentally, more powerful computational possibilities than their classical counterparts. How-
ever, for QC to emerge as an indispensable tool for practical applications, the exigency is not just for novel
protocols that process quantum information but also for extracting it wisely in classical formats that cater to
the solution of practical problems. Here we draw attention to potential methods of conducting fluid mechanics
research using QC, which we call Quantum Computation of Fluid Dynamics (QCFD). Starting with a brief
introduction to QC, we will distill a few key tools and algorithms from the huge spectrum of methods available
and evaluate possible approaches of QC in fluid dynamics. Further, as an example, we demonstrate an end-
to-end implementation of modified Quantum Linear System Algorithms (QLSA) to study problems such as the
Poiseuille flow. We also introduce here a new, high performance QC simulator, specific to fluid dynamics, which
we call “QuOn”, designed to simulate most standard quantum algorithms. We shall present results using both
QuOn and the IBMQ–Qiskit tools and shed light on essential contributions needed to make QCFD simulations
practicable.
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Part I

Introduction and the Big Picture of Quantum CFD
1.0 INTRODUCTION

Fluid mechanics as a field poses a vast array of interesting questions that relate to almost everything we see
around us. Apart from theory and experiments, computational methods have greatly aided fluid mechanics
research over the past few decades; indeed, with the growth in computers of increasingly higher computational
power, fluid mechanical simulations have become highly realistic. But with increasing sophistication comes
new generations of questions. For instance, even with the great advances seen in High Performance Computing
(HPC), and despite the progress being made continually by very large Direct Numerical Simulations (DNS), one
cannot say that long standing questions relating to the separation of scales in turbulence have been addressed
fully. Without necessarily making the explicit case that computer technology development has hit obstacles,
we simply note that the computational challenges being faced at present are so enormous that simply making
supercomputers more powerful cannot catch up with the demands. Not only manufacturing smaller transistors
face quantum effects, but also their integration into massively complex systems poses numerous challenges. To
break this barrier, one needs a change of paradigm in computing. Enter quantum computing!

In quantum computing, we manipulate quantum systems to perform calculations and simulations. We
are thus entering an era in which computations are becoming more “physical”. In fact, it was a dream of
Richard Feynman [1] to simulate a quantum system by using another quantum system. We are now in the
NISQ (Noisy Intermediate Scale Quantum) era [2], where we have quantum computers of sizes ranging from
50 qubits to a few hundreds of them. (Qubits are essentially the quantum analogue of classical bits and will
be described later; it suffices to say here that their number characterizes the power and size of a quantum
computer.) The word “noisy” indicates that quantum devices are still prone to errors from external and internal
noises, and are not yet perfect. Yet, with quantum devices of the size just emerging, quantum computing
(QC) can outperform many operations that current supercomputers strain to achieve. Quantum Computers have
already started demonstrating their practicability in various fields such as finance strategies, medicine, quantum
materials and chemical simulations, resource management, optimization and cryptography. What we wish to
investigate here is its utility for performing Computational Fluid Dynamics (CFD) research.

In these lectures, which are in part derived from [3], presents an outlook on doing CFD quantum me-
chanically, which we term Quantum Computation of Fluid Dynamics (QCFD). It introduces and motivates
researchers who wish to study fluid mechanics or dynamical systems, in general, to the new possibility of us-
ing quantum computers. Part 1 includes section 3, which presents a brief overview of QC and its differences
from classical computing, and section 4, which provides the big picture of how fluid mechanics study can be
viewed in the QC context. This is followed by Part 2 where one can find a description of methods that are
lattice based (section 5) and continuum based (section 6). Section 6 also touches on the possibility of studying
quantum turbulence and reviews existing methods and proposes newer directions. Sections 6 and 7 list, from
the horde of QC algorithms, a few key ones that are deemed important for our purposes, and provide a few
specific demonstrations. Section 8 briefly mentions the currently available commercial quantum machines and
quantum programming tools. Part 3 includes the following topics: section 9 which introduces our own new and
high performance Quantum Simulator called “QuOn”, followed by section 10, which briefly discusses Quan-
tum Linear Systems Algorithm (QLSA) and its implementation using QuOn and Qiskit with a simple fluid flow
example. Finally, these lectures end with section 11 on a few conclusions relevant to QCFD.
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2.0 MOTIVATION

Several physical systems such as turbulent flows, glassy systems, protein folding and chemical reactions, are
formidably hard to simulate “efficiently” on even the biggest supercomputers. However, with the growth in high
performance computing (HPC) technology and equally “efficient” algorithms, computational fluid dynamics
(CFD) in particular, has progressed immensely over the last several decades. Some state-of-the-art Direct
Numerical Simulations (DNS) [4–6] of turbulent flows governed by the Navier-Stokes equations, simulate
flows at overwhelmingly large Reynolds numbers (Re) with high resolutions. These simulations not only reveal
the fine details of the flow physics [5, 6], but also test the limits of supercomputers they are run on. Let’s
for instance refer to Figure 1, which shows how HPC, isotropic DNS simulations have evolved with time and
increasing computational power, all the way from 323 to ≈ 180003 grid point simulations (a-f) [7–12]. We
see that it roughly scales with Moore’s law. However, even with the upcoming exa-scale machine upgrades,
reaching significantly higher Reynolds number seems almost impossible in the near future.

Figure 1: Evolution of Isotropic DNS simulations with time and computational power. The capacity scales as Moore’s Law.

For instance, to simulate flows with resolutions (or Re) high enough to settle unresolved questions, or to sim-
ulate physical systems with extremely high Re such as the Sun or a cyclone, one would need supercomputers
that are several orders of magnitude higher in power than the current ones. Thus a paradigm shift into quantum
computing might, after all, become necessary to attain such computational scales at exponentially faster rates
as shown in Figure 2 (not to scale, representative only).
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Figure 2: A schematic of quantum vs classical scaling of computational power or Reynolds number growth with time

3.0 QUANTUM COMPUTATION - SOME FUNDAMENTALS

The purpose of this section is to provide a brief overview of how the working rules of QC differ from those
of classical computing. It is intended for readers with minimal background in quantum computing; a detailed
account can be found in [13].

3.1 What is Quantum Computation?

It is a form of computation centered on quantum mechanics, manipulating information in the form of quan-
tum bits called “qubits”, by designing appropriate “quantum algorithms” that comprise “quantum gates and
circuits”, which, in turn, act on these qubits to yield the intended result. This sounds similar to classical com-
putation, except that every word or phrase is prefixed by the word “quantum”. We shall explain each of these
terms below.

3.2 Qubits

Qubits form the work horse of quantum computation. Similar to classical bits, quantum bits are objects that
hold information describing quantum physical systems, which are eventually manipulated to perform a compu-
tational task. In reality, these qubits represent the state of an actual quantum physical system, governed by laws
of quantum mechanics. Mathematically, it is given by the wavefunction Ψ, which completely encodes all the de-
tails describing the state of a quantum object. As a working example, a qubit could represent the two spin states
of an electron. There exist several physical realizations of qubits such as Quantum Electro-Dynamic (QED)
Optical Cavities, Ultra Cold atoms and Rydberg ions, Superconductors and Topological Materials (Majorana
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Figure 3: Bloch Sphere. Here α is the global phase, β is the polar angle and the azimuthal angle γ is the relative phase

fermions), Photons, Quantum dots, Nuclear Magnetic Resonance (NMR), etc. For the rest our discussion, how-
ever, we shall simply describe qubits as abstract mathematical objects. For now and for all practical purposes,
we shall denote qubits as wavefunctions, which are vectors in a complex vector space called the Hilbert Space
H. In Dirac’s bra-ket notation, it is represented as a “ket” vector |Ψ⟩ in H (∈ Cn)

|ψ⟩ =


c1
c2
...
cn

 ; ci ∈ C (1)

while “bra”, given by ⟨Ψ|, is the vector dual = |Ψ⟩†. These wavefunctions obey all the rules of a complex
vector space. An obvious extension to this concept is to multiple qubits by taking tensor products of individual
wavefunctions, which together lie in a tensor-product Hilbert space of corresponding wavefunctions: |Ψ⟩ =
(|ψ1⟩ ⊗ ...⊗ |ψn⟩) ∈ H⊗n. For instance, the two spin states (spin-up ↑ and spin-down ↓) of an electron, could
correspond to the state eigenvectors |0⟩ and |1⟩, respectively. The wavefunction of such two level or two state
systems is a complex vector in H ∈ C⊗2 which, when expressed mathematically as a linear combination of the
basis vectors, has the form

|Ψ⟩ = c1|0⟩+ c2|1⟩, (2)

where

|0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
. (3)

Physically, the complex numbers c1 and c2 represent the probability amplitudes of the electron being in
a given basis state, whose squares, |c1|2 and |c2|2, according to Born’s principle, give the probability of the

electron being in either state, |0⟩ or |1⟩. This only implies, at any given time, that the electron has a finite 
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Figure 4: Circuit for a simple NOT operation

Figure 5: Probabilities before NOT operation

Figure 6: Probabilities after NOT operation
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probability of being in both states simultaneously, unlike an unbiased coin. (Such superposition states sum to
unity as probabilities should.) This is what distinguishes a classical state from a quantum one: a quantum state
prior to measurement or observation can exist in a superposition of two different states, while a classical state
can be in only one of them at a given time. This gives us access to multiple basis states simultaneously; this
is the quantum parallelism which we shall examine subsequently. Apart from the Hilbert space representation,
another useful visualisation of a qubit is the Bloch Sphere representation shown in Figure 3. Every possible
state described by equation (2), can be represented as a vector on this unit sphere via the relation

|Ψ⟩ = eiα
[
cos

(β
2

)
|0⟩+ eiγ sin

(β
2

)
|1⟩

]
, (4)

where α is the global phase, γ the relative phase (azimuthal angle) and β the polar angle. All transformations
and actions of “quantum gates” on qubits are to be regarded as rotational affine transformations on the Bloch
vector.

Table 1: Quantum Logic Gates

Quantum Logic Gate Circuit Symbol Operation

X(Pauli X) X |0⟩ → |1⟩ |1⟩ → |0⟩

Y(Pauli Y) Y |0⟩ → i|1⟩ |1⟩ → −i|0⟩

Z(Pauli Z) Z |0⟩ → |0⟩ |1⟩ → −|1⟩

H(Hadamard) H |0⟩ → |0⟩+|1⟩√
2

|1⟩ → |0⟩−|1⟩√
2

Rϕ(Phase Shift) T |0⟩ → |0⟩ |1⟩ → eiϕ|1⟩

CNOT
|q1⟩
|q2⟩

|q1, q2⟩ → |q1, q2 ⊕ q1⟩

SWAP
|q1⟩

|q2⟩
|q1, q2⟩ → |q2, q1⟩

Toffoli

|q1⟩
|q2⟩
|q3⟩

|q1, q2, q3⟩ → |q1, q2, q3 ⊕ q1 · q2⟩

3.3 Quantum Gates, Circuits and Algorithms

In analogy to classical computing, where we write algorithms to manipulate information, and accomplish them
fundamentally via logic gates such as AND, NOT, OR, NAND and Toffoli gates, information manipulation is
accomplished by quantum algorithms using quantum logic gates and circuits, as explained below.

Quantum gates are fundamentally unitary operators U (UU† = I), which cause affine rotational transforma-
tions on qubits. These unitaries are linear and reversible operations (unlike classical gates such as NOT), and
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are also norm-preserving. It is obvious that an infinitely many such unitary transforms can exist but, among
them, the fundamental and important ones are listed in Table 1. As in classical computing there are a set of
quantum gates which are universal, and a detailed description can be found in [13].

Now, a combination of such gates forms a quantum circuit. For instance, consider the quantum version of
the classical NOT gate acting on a qubit. This is the X gate, given by σx, the Pauli operator. To see this in
action, let us prepare a single qubit (q0) in the state |ψ⟩ =

√
0.6|0⟩+

√
0.4|1⟩ and then apply the

X gate = σx =
[
0 1
1 0

]
. This yields

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
and

[
0 1
1 0

] [
0
1

]
=

[
1
0

]
. (5)

That is, this gate just flips the state |0⟩ → |1⟩ and |1⟩ → |0⟩. After operating this gate, we measure the
probabilities (|c1|2 and |c2|2) associated with the basis states and store them in a classical register (c0), as
shown in Figure 4. The horizontal lines or circuit wires represent the time evolution of a qubit, and the double
lines represent a classical bit. The meter symbol represents a measurement operation in the computational basis,
while the X symbol denotes the quantum NOT gate.

This circuit is now run on IBMQ Qiskit quantum simulator platform; from the results shown in Figures 5
and 6, it is clear that the states have flipped. It is worth noting that the NOT operation is applied on both |0⟩ and
|1⟩ simultaneously, i.e., we now have the new state |ψ′⟩ =

√
0.4|0⟩+

√
0.6|1⟩. We shall explore the associated

notion of quantum parallelism further but note here simply that a quantum circuit is basically a construction
of quantum gates and wires that together act on a given set of qubits and perform the desired transformation,
while a quantum algorithm is a collection of linked quantum circuits that performs a computational task. We
shall outline the important algorithms in the sections to follow.

3.4 Quantum Parallelism

With a simple block diagram, we shall briefly outline quantum parallelism and the subtle difference between
quantum and classical computing.

Figure 7: Quantum Parallelism

Consider a Boolean function, Bf: {0,1} 7→ {0,1}. We wish to evaluate this function for both 0 and 1
via quantum processing. For this, we take a 2-qubit state |ψin⟩ = |q1q2⟩, where q1, q2 ∈ {0, 1}. To keep
our discussion brief, let us accept the existence of an oracle function (black-box) Ff that basically performs

|q1,q2⟩
Ff−→ |q1, q2

⊕
Bf (q1)⟩, where

⊕
represents modulo 2 addition (refer to [13] for the details of the black-

box). To compute both Bf(0) and Bf(1) classically, we would have to do the computation twice. Now let us
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look at the quantum circuit in Figure 7, whose action is as follows: First, a Hadamard gate is applied on the first
qubit: |0⟩ ⊗ |0⟩ H⊗I−−−→ |0⟩+|1⟩√

2
⊗ |0⟩. This state now forms the input to the black-box, which finally produces the

output state by applying Ff , as

|Ψ⟩out =
|0,Bf (0)⟩+ |1,Bf (1)⟩√

2
. (6)

Now, we have evaluated in just one shot both Bf(0) and Bf(1). This is quantum parallelism. The concept can
be extended to more qubits, and also be used to extract information about some global properties of the function
Bf, so as to verify whether or not a given function is a constant; algorithms such as Deustch-Josza and Simon’s
algorithm can do that and more [13]. This inherent parallelization of QC at the physical level demonstrates one
of the many subtle and fundamental differences that sets QC apart from classical computations. In the sections
to follow, we shall look at algorithms, gradually narrowing our scope to a discussion of fluid mechanics.

4.0 QCFD: THE BIG PICTURE

We now attempt to address the task at hand: Analyzing the possible utility and advantages of quantum comput-
ing to study physical systems, fluid mechanical in particular. To this end, a slight digression towards a broader
picture of QC study, shown in Figure 8, is useful for classifying the problems and methods for fluid mechanics.
There are primarily three possible sets of problems which could be addressed by QC: (1) quantum systems, (2)
classical systems and (3) quantum algorithms. Each of them is described below.

4.1 Quantum Systems

Quantum systems are obvious candidates for using QC. Though all quantum systems are legitimate candidates,
problems that are currently being explored, or could be explored, fall in two categories:

(a) Lattice based systems: Most hard quantum condensed matter systems such as the Hubbard problem or the
quantum lattice gas fall in this category. Here, one can look at the lattice based Hamiltonians to either perform
a quantum simulation or compute observables and properties via specific algorithms.

(b) Continuum problems: On the other hand, some problems such as quantum turbulence and quantum liquids,
would require the integration of the many-body Schrödinger equation followed by a mapping to macroscopic
observables. One could also use quantum algorithmic numerical tools to integrate model equations such as
Gross Pitaevski equations (in the case of quantum turbulence) or do a quantum Monte Carlo study, etc.

4.2 Classical Systems

A slightly harder but an interesting avenue would be to compute classical systems using quantum computing.
Most of the effort here would be spent in translating classical dynamics into the quantum language. One can
then harness the quantum advantage from here on. Once again, a similar classification could be done, where one
looks at lattice systems, Lattice Boltzmann Methods and molecular dynamics, or one can start using quantum
based mathematical tools such as ODE solvers and eigenvalue solvers or optimization methods for integrating
and solving classical governing equations such as the Navier-Stokes equations.
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4.3 Computational Tools

Though the development of quantum algorithms would need new mathematical tools, this step can proceed in-
dependently up to a certain point. Here one would be interested primarily in developing, quantum mechanically,
the numerical solvers or methods available on classical machines, such as optimization, ODE/PDE solvers, fac-
torizations, data search, eigenvalue solvers, etc.

With this background, we now proceed to examine each of these methods and provide real quantum com-
putational demonstrations. From these methods, we shall focus primarily on two methods suitable for studying
fluid dynamics: (1) lattice based methods, and (2) continuum quantum simulations and quantum algorithms.

Figure 8: Classification of problems based on QC methods
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Part II

Overview of Methods for QC in Fluid Dynamics
5.0 LATTICE SIMULATIONS

In addition to the popular computational methods such as (DNS) [5, 7, 14–16], Large Eddy Simulations (LES)
[15, 17, 18], Reynolds Averaged Navier-Stokes (RANS) [15, 19] and other modelling techniques, the Lattice
Boltzmann Method (LBM) [20, 21] has also been used recently to model fluid dynamical problems. The
underlying principle governing LBM stems from the classical Boltzmann kinetic transport mechanism, which
models the fluid as an ensemble of a large number of fictitious “fluid particles” placed on a uniform lattice.
These fluid particles advect in some allowed velocity directions and collide with each other resulting in a
scattering-relaxation type process, which results to a net momentum transfer, as shown in Figure 9. The main
advantage of this model is the large reduction in the number of degrees of freedom with which one would
otherwise have to deal in the continuum case. The basic LBM equation is(

∂t + vα.∇
)
ρα(r, t)︸ ︷︷ ︸

Advection

= Sαβ
(
ρeqβ (r, t)− ρβ(r, t)

)︸ ︷︷ ︸
Scattering-Relaxation

. (7)

where v is the velocity, ρ is the mass density, S is the scattering matrix and ρeq is the equilibrium distribution
of the mass density (for a detailed review refer to [21]). One could naively say that, since quantum mechani-
cal problems inherently deal with quantized “particles”, problems that involve particle tracking (e.g., discrete
Lagrangian dynamics), would be a good method for the application of QC to fluid dynamics.

Figure 9: Schematic of an LBM simulation

5.1 LQC 1: Quantum Lattice Gas Automaton and Phase Coherent Quantum Networks

This method provides insights into one of the physical frameworks for generating a map from classical fluid
dynamics to QC. As an aside, though this method has been proposed quite a while ago, only theoretical and
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classical computer simulations of the QC method had been done (due to the absence of a real QC at the time),
so the implementation on presently available QCs remains to be established. The key idea here is derived from
Quantum Lattice Gas Automaton (QLGA) [22, 23], which is a quantum extension of the classical lattice gas
system.

As a simple illustration let us consider a 1D lattice system. The classical lattice gas tags every particle with
instantaneous positions and velocities (x,v)i, where the velocities vi at every lattice site points either to the left
or the right. With this scheme, we generate an ensemble of 1D state configurations, which evolves according to
a local evolution map. This mapping, like the LBM in Equation 7, is a combination of advection and scattering
processes.

Now its quantum counterpart, the QLGA, prepares quantum superpositions of the classical states. For a
single particle 1D lattice of length N, this results in each site having 2 pseudo occupation slots (q), correspond-
ing to the left (l) and right (r) streaming particles with associated probabilities. This means that we now have
a 2 qubit system |ψ⟩i = α|q1q2⟩i + β|q1q2⟩i and q1, q2 ∈ {l, r} sitting on each site, hopping to adjacent sites
with a basis set {|lr⟩, |ll⟩, |rr⟩, |rl⟩}. The scattering processes of these qubits is given by the scattering matrix
Ŝ that captures the interactions, while the advection is given by Â. If L and R are left and right scattering
probability amplitudes (i.e., the probability that a particle travelling left as it enters a site continues leftwards,
etc), the scattering matrices for the cases of one and two qubits (for some p) would be given by

S1 =

(
L R
R L

)
=

(
cos p i sin p
i sin p cos p

)
(8)

S2 =


1 0 0 0
0 L R 0
0 R L 0
0 0 0 θ

 =


1 0 0 0
0 cos p i sin p 0
0 i sin p cos p 0
0 0 0 θ

 , (9)

where |L|2+ |R|2 = 1 = |θ|2 and θ represents the relevant multi-particle scattering events of the delta-function
type. Thus the dynamics of the advection and scattering steps could be summarised quantitatively as follows,
with the propagation of the left and right travelling wavefunctions:

Ψ(r, t+ 1;→) = LΨ(r− 1, t;→) +RΨ(r+ 1, t;←) (10)

Ψ(r, t+ 1;←) = LΨ(r+ 1, t;←) +RΨ(r− 1, t;→). (11)

Here, L and R scale as p, and the evolution of such a process is unitary and preserves the norm. The sum
of these two wavefunctions satisfies the Schrödinger equation. Interestingly we can recover both the Dirac
and the Schrödinger equation with limits δr → 0 and δr2 → 0 as δt → 0, which is done using the standard
Chapman-Enskog asymptotic closure [22, 24, 25].

A fact worth mentioning is that the quantum effect of the scattering operator causes a local entanglement in
a specific lattice zone radius, while the advection operator acts globally, causing superposition of configuration
states as well as a global entanglement. The QLGA setup was originally used in this form to perform quantum
many body system simulations [24–28], and was later modified into what is known as the Phase Coherent
Quantum Lattice Network to compute mesoscopic and macroscopic fluid dynamics, and to study quantum
mechanically the diffusion equation and Burgers flow [29–32].

These amended versions naturally evolved in response to the need for minimizing impediments such as
errors due to large entanglement and noises that depend on the environment. The main difference in these
extensions is that, instead of the qubits representing state superpositions, they directly replace the classical bits
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that store site information in classical LBM. For instance, in a model with 4 qubits per site, with each lattice site
having 4 nearest neighbors, one can encode 24 complex numbers per site. Thus, every site now acts as a small
4 qubit QC and many such QCs can be connected via a lattice network to form a coherent quantum network. In
general, for anN -site lattice withNq qubits per lattice (also the number of nearest neighbors), we have a lattice
QC made of a total of NT = N ∗ Nq qubits. We would thus have a 2NT -dimensional Hilbert space composed
of 2Nq dimensional submanifolds corresponding to local site-specific Hilbert spaces and, with C representing
the coefficient matrix and qi’s being the qubits on every site, the total wavefunction would be

Ψ(r1, .., rN, t) =
∑
ψ(ri,t)

C× (ψ(r1, t)⊗ ....⊗ ψ(rN, t)) (12)

=
∑
ψqi

C̃× (ψq1 ⊗ ....⊗ ψqNT
). (13)

The evolution operator for this lattice gas simulation is obtained by integrating the corresponding Schrödinger
equation and, as explained above, this unitary evolution operator would now correspond to the product of the
unitary advection (Â) and scattering (Ŝ) matrices, giving us

Ψ(r, t+∆t) = eiĤ∆t/ℏΨ(r, t) = ÂŜΨ(r, t). (14)

We might now ask which of the mesoscopic fluid dynamical observables can be computed. For this, let
us take a Bravais Lattice with lattice site positions given by R, while the corresponding unit vectors r and
wavefunctions are given by the propagating Bloch vectors with a lattice-specific periodicity (i.e., we can reach
any site from any other site by advancing through an integral multiple of the lattice periodicity, yielding a total
of steps to be ki ≤ N ∗ (period)). Recasting a lesson from the classical lattice gas, we can now compute the
occupancy probability, as well as mass and momentum densities [30] as follows.

(a) The occupancy probability for the quantum case is straightforward and is just the average of the num-
ber operator n̂R = ĉ†RĉR. This can be measured on many practical QCs like NMR-QC (nuclear magnetic
resonance) by Quantum State Metrology (which we shall describe in the sections to follow). From the basic
postulate of quantum mechanics, the average is given by the trace of the operator taken with the lattice’s density
matrix, thus giving the occupation probability to be

PR,t = Tr[(|Ψ(R, t)⟩⟨Ψ(R, t)|)n̂R] = Tr[ρ(t)n̂R]. (15)

(b) If d is the lattice spacing, we can directly write down the mass and momentum densities (ξ and ξv) as

ξ(r, t) = lim
d→0

RN∑
ki,R1

mTr[ρ(t)n̂Rki
], (16)

ξ(r, t)v(r, t) = lim
d→0

RN∑
ki,R1

mv2r(RmodNq)Tr[ρ(t)n̂Rki
]. (17)

Now, as the limit reaches the continuum (i.e., with higher lattice resolution), we could use quantum observables
such as the number operator to estimate mesoscopic quantities. Finally, one can also write the mesoscopic
transport equation as

PR+dr,t+∆t = PR,t + ⟨Ψ(R, t)|Ŝ†n̂RŜ − n̂R|Ψ(R, t)⟩, (18)
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since

⟨Ψ(R, t)|Ŝ†n̂RÂ
†|Ψ(R, t+∆t)⟩ = ⟨Ψ(R, t)|Ŝ†n̂RÂ|Ψ(R, t)⟩.

These equations and operators can be simulated by appropriately recasting them in terms of generalized U3

gates (IBMQ) given by 3 parametric unitary gates, which are the Euler angles [30, 33]:

U3 =

(
cos( θ2) e−iλ sin( θ2)

eiϕ sin( θ2) ei(ϕ+λ) cos( θ2)

)
. (19)

Here 0 ≤ (ϕ, λ) < 2π and 0 ≤ θ ≤ π. Thus, the takeaways of this method are the following: (1) it provides
an understanding of the translation of classical LBM calculations to its quantum analog, thus enabling newer
methods for building QC circuits to simulate fluid dynamics; (2) it gives an idea of how one could make use
of quantum lattice properties and entanglement to map it to macroscopic properties of the flow; and (3) though
a clear estimate on scaling behavior, compared to classical LBM, is an open avenue, it seems obvious that
one can gain over classical LBM, in both space and time complexity of the problem, since we are using state
space configurations in terms of quantum superpositions and are performing simultaneous evolutions of these
states. Also we draw the reader’s attention to a more recent quantum algorithm for a collisionless Boltzmnann
equation which offers insights into possible circuit implementations of such lattice methods[34]. We shall also
examine a more recent variant of this method that is more amenable to implementation and expected to utilize
exponential speedup due to better way of quantum superposition.

5.2 LQC 2: Dirac Equation and the Pseudo Spin Boson system

A variant procedure is the construction of a map from the classical LBM to the Dirac equation [20, 35, 36].
We shall not dwell on details of this method but provide only an outline of the fluid dynamical aspects. This
method generates a map, using what is known as a coupled pseudo-spin bosonic system, which is amenable for
implementation on a trapped ion QC or a superconducting QC. We first note that we can translate Equation (7)
into a “Majorana type Dirac equation” of the form [37]

i
∂Ψ

∂t
+ iÂpb∇pbΨ = MΨ, (20)

where Â is the quantum analog of the advection matrix (a Clifford operator—since it is given by Pauli matri-
ces), while M is the quantum representation of the mass term, which is Hermitian. Since we know that Clifford
operators (isomorphic in R3 with Pauli operators) do not simultaneously commute, we will need to have diag-
onal advection operators and symmetric and imaginary scattering matrices. The idea is essentially to map the
mass density to a corresponding probability density of a wavefunction that is embedded in an appropriate “Fock
space” of the given bosonic modes. For instance, in the 1D case, we would have a single bosonic wavefunction
distribution as |Ψ(x, t)⟩i =

∫
dxP(x)|x⟩i, where P(x) holds the information of the mass distribution. (For a

higher dimensional Fock space with 2 bosonic modes in a 2D lattice, |Ψ(x, t)⟩i =
∫
dx1dx2P(x1, x2)|x1⟩|x2⟩.)

For producing different such distributions, we need to have an external parametrized knob that can control them.
This task is accomplished by what is known as the “pseudo spins”, which are coupled to the bosonic modes as
|Ψ⟩ = ∑

i Pi|s⟩i⊗|Ψ(x, t)⟩. The operators to diagonalize the advection matrix would, in the second quantized
Dirac picture, be the following [36]:

e−iÂ∆t/ℏ = exp
(
− i∆t

ℏ
π

2
√
2

(
Z1 ⊗ I2 + X1 ⊗ σpb2

))
. (21)
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Here Zi and Xi are the usual Pauli operators on ith mode and σpb refers to the pseudo spin. On the other hand,
the scattering operator Ŝ, which is essentially a non-unitary type evolution step, is made “pseudo-unitary”
by making its evolution dependent on an ancillary qubit, which acts as the control (refer to [36] for detailed
methodology); finally, this Ŝ is decomposed into a weighted sum of two unitary operators as e−iŜ∆t/ℏ =

eÛ1+αÛ2 . Successive application of these operators on the initial lattice wavefunction can be done by a standard
and useful trick of decomposing the evolution operators via a suitable Lie-Trotter-Suzuki decomposition, which
allows one to translate such operations as a quantum circuit using generalised U3-type gates. Importantly,
resources needed to do this operation is a polynomial in the degrees of freedom, while being sub-polynomial
in error. Finally, we add suitable quantum metrology to extract the final state. The entire process has been
illustrated for a simple advection-diffusion equation in [36]. Also, since this method, unlike previous ones,
replaces classical bits directly by qubits, the pseudo-spin system that is used manifests quantum superposition,
thus allowing one to exploit the exponential speed up of the superposition principle of QC; it would certainly
be interesting to validate this expectation on present QCs.

5.3 LQC 3: Quantum to Classical Mapping

This method has often been used in early theoretical calculations by performing a mapping from a d-dimensional
partition function for quantum systems to a (d+1)-dimensional partition function for classical systems. In con-
densed matter systems, this is accomplished by mapping classical to quantum lattices by means of classical
Monte-Carlo methods [38, 39]; in conformal field theories, this is achieved by understanding gravitational
bulk-boundary correspondence [40, 41], etc. Though we will not describe details, we believe that this has the
potential for hybridizing either LQC 1 or LQC2 along with quantum-to-classical mapping for solving fluid
dynamical problems.

In this method, one basically computes a quantum partition function Tr(e−Hβ) from the Feynman imaginary
time path integral

Z =
∑
r,ri

⟨r|e−H∆β/N |r1⟩⟨r1|...|rN ⟩⟨rN |e−H∆β/N |r⟩, (22)

which is exactly the classical (d+1)-dimensional partition function, except that the extra dimension is replaced
by space instead of time; it can be solved using the conventional transfer matrix type calculation. Now if one sets
up a lattice-style fluid dynamics problem in 2D, it would be equivalent to solving a 1D quantum lattice problem
with this map. (There also have been efforts to map d dimensions→ d dimensions for purposes of understanding
classical statistical mechanics in quantum mechanical terms [42].) This is now being actively applied to connect
classically simulated annealing to quantum annealing methods to solve optimization problems. In fact, we shall
discuss them separately to see how machines based on quantum annealing are being used to solve fluid dynamics
problems.

6.0 CONTINUUM SIMULATIONS

Simulations done in a true continuum sense (i.e., no lattice models) ultimately boil down to preparing a mix
of computational tools or algorithms that can emulate standard mathematical methods that solve the govern-
ing equations(PDEs and ODEs), quantum mechanically. To this end, we draw the reader’s attention to some
currently implementable quantum algorithms and circuits that one could use in fluid dynamics.

When we refer to an implementable quantum algorithm, we mean quantum circuits that can be constructed
from known coherent set of quantum logic gates and measurement processes. A complete computational pro-
cess or simulation of a fluid dynamic problem involves three essential steps: (1) Initial data input or loading;
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(2) Processing and generating new data; and (3) Reading the processed information to obtain results. Each of
these steps, though obvious, involves nontrivial operations in QC. We will now take a closer look at them now.

6.1 Data Loading

The data inputs could be user-defined computational parameters or initial conditions of an ODE/PDE integrator,
etc. Classically we input and store data, for instance in C++, by writing algorithmically int a = 10;, so that
a holds the value 10. At the machine level, the data are “written” as a magnetic inscription of local magnetic
polarities on a hard disk. We now ask how we could do the same exercise on a QC, i.e., store the value 10 in a.
The storing of such a qubit at machine level comes in a variety of ways mentioned earlier. Here, we shall not
explain how these physical realisations work, but dwell more on the algorithmic level, considering the machine
level as an existent oracle. Though there are a variety of specific methods, in brief, we can load a classical bit
of information onto a quantum computer in two ways:

(1) Amplitude loading: This method, also known as state preparation or the initialization method [13, 43],
where one initializes a specific qubit state with the user-defined complex probability amplitudes of quantum
superposition. That is, the input data are loaded in the form of complex probability amplitudes of wavefunc-
tions. One of the algorithms followed for instance on practical QCs (like IBMQ) is outlined in Algorithm 1
[44], though one can always come up with custom circuits to construct a given state (we will detail another
procedure, along with implementation, in Section ??). In this method, called the recursive quantum multiplexer
algorithm, one starts with the required state and designs a circuit to transform the required state to all 0s; thus,
the inverse circuit prepares our required state starting from all 0 states. As a demonstration, suppose we want to
load four complex values such as (i), (2 + i),

√
2i, 1 (in this order). Since we can store the N values in log2N

qubits, we need a 2 qubit system that looks like the following:

|Ψ⟩ = 1

3

(
i|00⟩+ (2+ i)|01⟩+

√
2i|10⟩+ 1|11⟩

)
. (23)

The required set of unitary operations, obtained by following Algorithm 1 [44], is represented in the quantum
circuit shown in Figure 10. Thus the probabilities of these states are essentially the magnitudes of these states
(i.e 1

9 ,
5
9 ,

2
9 and 1

9 ). Upon performing state tomography (see later), the final state when computed with Qiskit—
the IBM Quantum Experience platform—is shown in Figure 11, which almost exactly matches the required
state. However, most state initialization procedures

Figure 10: Circuit for amplitude loading 4 complex numbers

(2) State loading: Instead of using complex amplitudes, one may store the data directly as the state ket vectors.
Suppose we want to load the decimal number 10, whose binary form is 1010. By state loading, we mean that
there is some state that looks like |ψ⟩ = |ϕ⟩ ⊗ (|1⟩ + |0⟩ + |1⟩ + |0⟩). To do this, since we need 4 basis states,
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Algorithm 1: Amplitude Loading: Quantum State Preparation
Input: c1, c2 · · · cn
Output: Uload , |Ψ⟩final = c1|00...0⟩+ c2|00...1⟩+ ...+ cn|11...1⟩

1 Function AMPLITUDELOAD(c1, c2 · · · cn):
2 U = I
3 |Ψfinal⟩ = |00..0⟩ (On Quantum Device)
4 |Ψ⟩temp ← c1|00...0⟩+ c2|00...1⟩+ ...+ cn|11...1⟩ (On Classical Device)
5 while ( |Ψ⟩temp == |00....0⟩) do
6 |Ψ⟩temp = DISENTANGLE(|Ψ⟩temp) Least Significant Bit
7 Choose αi , βi and global phase ϕ, such that:
8 while (|qi⟩ ← cie

iϕ|0⟩) do
9 Uz = Rz(βi)|qi⟩

10 Uy = Ry(αi)|qi⟩
11 (Uzy)i ← Uy ⊗ Uz
12 U ← (Uzy)i ⊗ U
13 Now U = (Uzy)n ⊗ · · · ⊗ (Uzy)1
14 Uload = U †

15 |Ψfinal⟩ = Uload|Ψfinal⟩ = c1|00...0⟩+ c2|00...1⟩+ ...+ cn|11...1⟩
16 return Uload, |Ψfinal⟩
17 Function DISENTANGLE(|Ψ⟩temp):
18 |Ψ⟩local = |Ψ⟩temp ← c1|00...q1⟩+ c2|00...q2⟩+ ...+ cn|11...qn⟩
19 return |Ψ⟩local ← c1|00...⟩ ⊗ |q1⟩+ c2|00...⟩ ⊗ |q2⟩+ ...+ cn|11...⟩ ⊗ |qn⟩

Figure 11: Required state prepared on IBMQ
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Figure 12: Circuit for state loading 4 classical bits

Figure 13: The density matrix of the data loaded 3 qubit state
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one has to construct a state such as |ψ⟩ = (|0⟩|0⟩ ⊗ |1⟩ + |0⟩|1⟩ ⊗ |0⟩ + |1⟩|0⟩ ⊗ |1⟩ + |1⟩|1⟩ ⊗ |0⟩), where
we see that the third qubit holds the value we need, 1010. To prepare such a state, we use a combination of
Controlled-SWAP, X, H and Toffoli gates as shown in Figure 12. (A detailed explanation of such circuit designs
is found at [45].)

Figure 13 shows the density matrix ρ =
∑

i pi|ψ⟩i⟨ψ|i of the prepared state. Looking at the third bit in
Figure 13, which reads 1,0,1,0 corresponding to the highest peaks, we have the demonstration that the algorithm
has encoded the data into our qubits. Though one can see 6 qubits in the circuit, 4 of them are actually ancillary,
i.e., they are dummy qubits needed only for the processing and can be discarded at the end of the circuit by
disentangling them from our data. Therefore, as the number of bits (N) grows larger, it can be shown that the
most optimal circuit would need log2(N) qubits. This scaling in data loading is necessary if we have to build
quantum processing circuits with exponential scaling.

6.2 Output Measurements

After loading and producing new data, the data are processed by a series of unitary operations required by the
problem and the final state of the qubits is the output result we seek. The challenge is to efficiently estimate
these final states, which are the complex probability amplitudes and the state vectors. This process is called
quantum state estimation or quantum state metrology or quantum state tomography [13, 46–48].

This process is not straightforward because, in order to probe these qubits, one would have to perform
a measurement, which physically means interacting with the wavefunctions. Such interactions, apart from
inducing noise, also collapse the wavefunctions to one of the basis states resulting in smudging and loss of data
and results. The most elementary way to evaluate a state is to perform a von Neumann projective measurement
on the state along (say) the z-axis that forms the eigenvector of the computational basis states |0⟩ and |1⟩. But,
quantum mechanics tells us that projective measurements project the state to a particular basis vector and may
not always depict the complete information represented by a wavefunction. To get a total estimate of a given
superposition state, one would have to do something better.

The next simplest method is the empirical probability estimation by ensemble averaging, i.e., conducting
several identical experiments to generate a set of outputs and perform projective measurements every time, to
collect the probability statistics of each state under superposition (whose accuracy obviously increases with
the ensemble size). In order to make our discussion clear, let us briefly discuss the meaning of quantum
measurements.

QM Postulate: Measurement is an operator A that acts on a set of quantum states ψi to yield a physical
observable eigenvalue “a” with the following properties:

1. The probability of obtaining outcome “a” is

P (a) = ⟨ψi|A†
aAa|ψi⟩. (24)

2. The post measurement state would be

|ψf ⟩ =
Aa|ψi⟩√
⟨ψi|A†

aAa|ψi⟩
. (25)

Now, these measurements give us only the probability of a given eigenvalue “a” from a given state |ψ⟩. But
this output is “weak” in the sense that it is only from one single state and the measurement process, and other
successive measurements may not yield the same result even though we start out from identically prepared
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initial states, because of noise and decoherence. Thus we might have to average over many such experiments
and measurements. Since output of each experiment differs, it naturally creates an ensemble of states {|ψi⟩}.

As an aside, we note that this fact could be used advantageously for turbulence simulations. Since even
slightly different initial conditions lead to different dynamics, due to the inherent chaotic nature of the system, in
general, the present ensemble automatically represents an ensemble of many turbulent evolutions. The standard
way that quantum mechanics suggests for characterizing such an ensemble of states, whose exact form we have
to probe, is to use the density operator formalism. If pα is the probability of obtaining a state {|ψα⟩}, the density
operator is given by ρ =

∑
α pα|ψα⟩⟨ψα|. We may restate the previous measurement postulate in terms of ρ as

1. The probability of obtaining outcome “a” is

P (a) = Tr(A†
aAaρ). (26)

2. Its post measurement state would be

ρf =
AaρA

†
a√

Tr(A†
aAaρ)

. (27)

The density operator has the property that Tr(ρ) = 1 i.e., probabilities (non-negative eigenvalues) sum
up to unity. Since we are only interested in obtaining the statistics of each superposition state, we ask the
question: What type of measurement procedure respects the positivity and completeness property of the density
operator as well as yield the probability amplitudes of the states in the ensemble? The answer is termed POVM
Measurements (Positive Operator Valued Measure). The POVM elements constitute a set of operators {P aVM}
≡ {A†

aAa} that are constrained to be positive, since ⟨ψi|P aVM |ψi⟩ = ⟨ψi|A
†
aAa|ψi⟩ = P (a) ≥ 0, and complete,

i.e.,
∑

a P
a
VM =

∑
aA

†
aAa = I. In fact, as one can easily observe, we can even get the measurement operator

corresponding to a given POVM element by
√
P aVM = Aa.

We are generally not interested in the measurement itself but only in the statistics. Thus the POVM pro-
vides a clean way of doing this without worrying about the state itself. Another important advantage of pos-
itive definiteness of these operators is that, for a given set of non-orthogonal states, a POVM set of operators
{P aVM , P bV M and (P cV M = I−(P aVM+P bV M ))} can be used to compute their statistics or distinguish the states.
Thus, the output of sandwiching the operators between state vectors gives us the statistics. The operators are
designed to create a unique one-to-one mapping from the operator space to a particular output state. So any
positive output, resulting from the first two operators in our set, points uniquely to a specific state, while an
output from the third operator implies that we cannot comment anything about the state. So, essentially such
a measurement process never lets us go wrong in identifying states, but at the cost of being unable to com-
ment about the output from one of its operators. With this machinery we are ready to look at quantum state
tomography.

6.3 Quantum State Tomography

Let us begin with a density matrix representing an unknown quantum state that needs to profiled. Say we have
just one set of non-orthogonal qubit states. Experimentally it is impossible to construct the quantum state from
just one copy of the states. But we can make several POVM measurements from multiple copies and compute
the statistics. The set of operators {I/2, X/2 , Y/2 , Z/2 } that form a set of orthonormal operators can be used
to expand the density matrix as

ρ =
1

2

(
Tr(ρ)I+ Tr(Xρ)X + Tr(Y ρ)Y + Tr(Zρ)Z

)
. (28)

1- 22 STO-EN-AVT-377 



An Introduction to Algorithms in Quantum Computation of
Fluid Dynamics

The expectation of these operators can be obtained by Tr(Xρ). Now each of these expectation values can
be estimated by repeated measurements. Once we have a large sample size with good estimates of each of
these operator outputs, we can reconstruct the density operator of the unknown state. The standard deviation
of the estimate is 1/

√
N , where N is the ensemble size, as one would expect for a Gaussian random variable

in the large N limit. This in essence is the picture of Quantum State Tomography. The same procedure
can be extended to multiple qubit systems as well. This procedure is usually achieved in practice by a few
popular techniques whose illustrations and explanations are given in [49]. More advanced quantum metrology
techniques, which also make use of quantum phase estimation methods that could be used for fluid dynamics
applications, are discussed in [65]. As an example of a simple ensemble averaged measurement, we demonstrate
tomography of two entangled qubits. For this, we prepare a sample entangled Bell state

|ψ⟩ = 1√
2
(|00⟩+ |11⟩). (29)

via Amplitude Loading (as shown in Figure 14) and try to estimate its probability amplitudes by running on the
IBMQ. As one can clearly see, each qubit has the probability 1/2, which is exactly what we want to estimate
experimentally. As one can see the results from Figure 15, the histogram peaks properly with almost equal
probabilities (≈ 0.5) at |00⟩ and |11⟩. The small but finite probabilities of the other two states is due to quantum
errors and decoherence in the system. With this, we conclude our brief discussion on output measurements.

Figure 14: The quantum circuit for entanglement preparation and measurement

6.4 Data Processing

Having briefly discussed inputs and outputs of a quantum computational process, we shall now examine the
quantum algorithms that one needs to use to generate, process and manipulate data. A comprehensive and up-
dated collection and descriptions of most of the available quantum algorithms can be found in [13, 33, 49, 54,
66]. To keep our discussion contained, we choose only a few important ones that are possible candidates for
fluid dynamics simulations in Table 2(Table notes: Q/C-Quantum/Classical; VQE-Variational Quantum Eigen
solver; QAOA-Quantum Approximate Optimisation Algorithm; ** t = number of qubits with n-bit phase ap-
proximation and ϵ error. Specific references to the algorithms in Table 2 can be found at [33, 49, 54, 66]) With
these, the working procedure to go about solving a CFD problem, involving a specific set of PDEs, on a QC
would involve the following steps (In Section 10.2,we shall illustrate with an example):

Step A - Data Loading: First, we need to initialise the variables of the PDE under consideration, say the veloc-
ity and pressure field, u,p to an appropriate numerical initial iterate value. This is done by the quantum state
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Table 2: Quantum Algorithms

# Algorithm Description/Used in Complexity/Speed-up
1 Superdense Coding [13] Data compression & communication Compression Ratio 2:1

2 Quantum Fourier Transform DFT, Phase Estimation, Period Finding, Q: [Θ(n2),Θ(n log n)]
(QFT) [13] Arithmetic, Discrete log & spectral methods C: Θ(n2n) (n=#gates)

3 Quantum Phase Estimation [13] Quantum phases, Order Finding, Shor’s O(t2) operations**

Algorithm, HHL, Amplitude Amplification t = n+
⌈
log

(
2 + 1

2ϵ

)⌉
& Quantum Counting [50]

4 Grover’s Search [13, 51] & Data search, Amplitude Estimation, Function Q: O(
√
N )

Amplitude Amplification [52] minima, approx. & Quantum counting C: O(N) (N=#ops)

5 Quantum Simulation [13, 27] Integrates Schrödinger equation, HHL, superpoly

All Hamiltonian system simulations
(
e−iHt/ℏ

)
poly(n,t): n=dof, t= time

6 Gradients [53, 54] Computes gradients, convex optimisation quadratic - superpoly
volume estimation, minimising quadratic forms

7 Partition Function [54] & Evaluate/approx partition functions quadratic - superpoly
Sampling Pott’s, Ising Models & Gibbs sampling

8 Linear Systems & Solves AX=b for eigen values & vectors superpoly - exponential
HHL Algorithm [54, 55] ODEs, PDEs, simultaneous eqns.

Optimisation, Finite Element Methods etc

9 ODE [54, 56] Integrates ẋ = α(t)(x) + β(t) & similar forms superpoly - exponential

10 Wave Equation [57, 58] Integrates ϕ̈ = c2∇2ϕ & similar forms superpoly - exponential

11 PDE / Poisson Equation [54, 59, 60] Integrates −∇2ϕ(x) = b(x) and superpoly - exponential
PDEs of similar forms: Dϕ(x) = b(x)

12 Matrix Product States with VQE [61] Solves non-linear PDEs with VQE and MPS -

13 QFT Arithmetic [62] QFT based: + , - , * , mean , weighted sum superpoly - exponential

14 Function Evaluation [63] (Ex) inverse, exponentiation.. etc varies
for State Loaded data

15 VQE and QAOA [33] Computes optimisation type problems varies

16 Quantum Annealing [64] Computes optimization type problems varies
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Figure 15: Probability amplitude estimates

preparation as described earlier.

STEP B - Data Acquisition: To integrate the governing equations, one could think of several numerical methods
to do this for example:

1. Finite Difference Method: Like any FDM, we discretize the system first. This dicretization procedure,
along with boundary conditions, yields a matrix which performs the differential operation. We could use
any variant of Algorithm #8 #13 to start solving this problem. In general, solving such an FDM setup
boils down to solving a matrix inversion problem, which is done by Algorithm #10 (HHL) = Alg #2 +
Alg #3 + Alg #4. The speedup and complexity depends on the specific combination of each of these
algorithms.

2. Pseudospectral Methods: We can use Algorithm #3 (QFT) to first map both the LHS and RHS to the
spectral space, first computing the derivatives in the spectral space and then using HHL to invert.

3. Amplitude amplification: Further, we can append Algorithm # 5 to perform amplitude amplification to
amplify the probability of obtaining the right answer in every experimental run.

STEP C - Output Measurements: Once we obtain the eigenvalues and eigenvectors, we can perform a quantum
state tomography to extract the results and store them in classical registers.

Hybrid Simulations: It is important to highlight, that for near term simulations considering hybrid classical-
quantum methods might be the key. For instance, the currently available pseudospectral DNS codes face a major
bottleneck with the FFTW steps that need to be mapped out for computing derivatives. If at all we could effi-
ciently set up a hybrid algorithm, where only the FFTW steps are replaced by the QFT, we could tap into the
exponential speed up offered by QFT. To motivate this direction, a QFT demonstration is given in the following
section.
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6.5 Quantum Fourier Transform

The Quantum Fourier Transform [13] is very similar to the Discrete Fourier Transform performed by the cur-
rently available FFTW routines. To keep the discussion concrete, consider the simple example of discretizing
the domain and sampling the function at (say) four points. Now, the DFT of this function f at these four points
may be written as

F [k] =

j=N−1∑
j=0

f [j]exp
(
2πi

jk

N

)
. (30)

Here, the amplitudes f [j] =
{
f [0], f [1], f [2], f [3]

}
are being Fourier transformed toF [k] =

{
F [0], F [1], F [2], F [3]

}
.

Very similarly, the Quantum Fourier Transform (QFT) is a unitary operation that transforms as

i=N−1∑
i=0

αi|i⟩ 7→
i=N−1∑
i=0

βi|i⟩, (31)

where

βk =
1√
N

j=N−1∑
j=0

αj exp
(
2πi

jk

N

)
(32)

Equivalently, if we set ωjk = exp
(
2πi jkN

)

|α⟩ 7→ 1√
N

β=N−1∑
β=0

ωjk|β⟩. (33)

Note that the states in the computational basis |0⟩, |1⟩, |2⟩, |3⟩ can be expressed in the binary form as well,

Figure 16: The quantum circuit for 2-qubit QFT

which is |00⟩, |01⟩, |10⟩, |11⟩. With this step, we obtain the transformations of the sampled amplitudes to be

β0 =
1

2
[α0 + α1 + α2 + α3]

β1 =
1

2
[α0 + iα1 − α2 − iα3]

β2 =
1

2
[α0 − α1 + α2 − α3]

β3 =
1

2
[α0 − iα1 − α2 + iα3],

1- 26 STO-EN-AVT-377 



An Introduction to Algorithms in Quantum Computation of
Fluid Dynamics

caused by the unitary transformation operator UQFT . If ω = eiπ/2 the operator is given by

UQFT =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 =
1

2


1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

 . (34)

The quantum circuit that implements such a 2-qubit QFT is shown in Figure 16 below.
To illustrate its action, let us prepare the state already shown in Figure 11 using Amplitude Loading and

run the QFT on it. The expected outputs of the Fourier transform for these amplitudes, computed analytically,
is β0 = 0.574, β1 = 0.037, β2 = 0.306, β3 = 0.138, while the results obtained from the QFT are shown in
Figure 17. The QFT results are β0 = 0.569, β1 = 0.037, β2 = 0.311, β3 = 0.083. The precision can improve

Figure 17: The QFT output

with better Quantum State Tomography, while the computation of QFT is exponentially faster than DFT.

6.6 Quantum Turbulence

It would obviously be instructive to look at quantum fluid dynamics as well. A quantum fluid, like any other
quantum system, is described by its corresponding many-body interacting Hamiltonian and its evolution is
governed by a corresponding Schrödinger equation (a quick insight can be obtained from [67, 68]. The evo-
lution described by this equation represents an analytically consistent way of obtaining a proper microscopic
evolution. Since tracking ≈ 1023 particles is computationally impractical, given that macroscopic observables
are what we wish to understand, there is a huge motivation for developing macroscopic equations of motion.
The complete many-body quantum simulation may well be possible with a powerful quantum computer, but
one may also be able to develop more efficient versions of numerically integrating different model equations.
Both methods provide insight on the right descriptions of quantum turbulence and vortex reconnection. The
following QC tasks are possible candidates for studying quantum turbulence.
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6.6.1 Quantum simulation

The most microscopic description is that of the Hamiltonian picture. For instance, consider a Bose-Einstein
condensate Hamiltonian and its corresponding Schrödinger equation:

HBEC = − ℏ2

2m
∇2 + Vext(r) + Uint(r− r′), (35)

∂

∂t
|ΨBEC⟩ =

1

iℏ

[
− ℏ2

2m
∇2 + Vext(r) + Uint(r− r′)

]
|ΨBEC⟩ (36)

|ΨBEC⟩ = e−iHBECt/ℏ|ΨBEC0⟩. (37)

Now this calls for a many-body simulation. With the growing surge of QC methods of many-body algorithms,
we could perform a quantum simulation (Algorithm #7) [13] to evolve this equation. Among the methods being
developed, the Trotter decomposition method (or the Lie-Trotter-Suzuki decomposition) is worth mentioning.
If P and Q are Hermitian operators (that need not commute), we have, for any t

lim
N→∞

(eiP t/NeiQt/N )N = ei(P+Q)t. (38)

Now the same result can be used to derive higher order corrective equations such as:

ei(P+Q)δt = (eiPδteiQδt) +O(δt2) = (eiPδt/2eiQδteiPδt/2) +O(δt3). (39)

Now this is a very useful result, since we can take our HBEC and split it into HBEC =
∑n

i=1Hi Hamiltonian
operators acting on smaller sub-systems spanning a local Hilbert space. If [Hi,Hj ] = 0∀i, j and ℏ = 1, we
have

e−iHBECt = e−iH1te−iH2t...e−iHnt. (40)

But if commutation is not imposed, a similar correction is obtained:

e−iHBECt = e−iH1t/2e−iH2te−iH1t/2 +O(δt3). (41)

Following this procedure, each time-step operator can be decomposed into basic unitary logic gates and a
corresponding evolution circuit can be constructed. The following model equations would be amenable to
numerical integration using QC algorithms.

6.6.2 The two-fluid model

Simulating the Landau’s equations would be useful for those looking at quantum fluids at low velocities and
with no quantum vortices, since this model works best for irrotational and incompressible flows. The idea would
be to build on the previously discussed algorithms for dealing with ODEs and PDEs procedures to integrate the
following equations:

∂u1

∂t
+ u1 · ∇u1 = −∇

(p1
ρ1

)
, (42)

∂u2

∂t
+ u2 · ∇u2 = −∇

(p2
ρ2

)
+

ν

ρ2
∇2u2. (43)

Here the subscripts 1 and 2 correspond to superfluid and normal fluid, respectively. Let us now look at methods
that includes quantum vortices as well.
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6.6.3 Gross-Pitaevskii model

Along with a few approximations and assumptions, we can use the standard trick of Madelung Transformation
to establish a relationship between the BEC wavefunction and fluid macroscopic properties such as density and
velocity. This is the Gross-Pitaevskii equation

∂

∂t
|Ψcond⟩ =

1

iℏ

[
− ℏ2

2m
∇2 + Vext(r) + Uint|⟨Ψcond|Ψcond⟩|

]
|Ψcond⟩. (44)

The built-in assumptions are: (a) Though the actual BEC wavefunction is a sum of the actual condensate
wavefunction and the pertubative term, at T ∼ 0, we say ΨBEC ≈ Ψcond. (b) Length scales are of the order
of the vortex cores. (c) Only contact interactions are allowed Uint = Uδ(r− r′). This model is the nearest
microscopic description, yet has many limitations. A detailed outlook could be obtained from [67, 68].

6.6.4 Vortex filament model

The next level would be to move to scales greater than the vortex core sizes. We visualise the fluid as a ensemble
of arcs of quantum vortices and track these vortex arcs l, which is the vortex filament model. The evolution of
these arcs is given by

dl

dt
= usa + uf , (45)

where usa is the self-advecting velocity of the vortex and uf is the mutual friction between the normal fluid arc
surface. The computationally heavy step to be done by the QC is the evaluation of the Biot-Savart integral

ui =
Γ

4π

∮
(l− l′)

|l− l′|3 × dl, (46)

to compute usa, Γ being the circulation of the vortex filaments.

6.6.5 HVBK model

This model, obtained from a slight amendment of Landau’s equation, gives the best description for the largest
scales, much larger than the core size. The additional terms are the mutual friction force fmf and the arc tension
force fT. This model too has limitations owing to its assumptions on the vortex arc orientations. The equations
are (let us call F = fmf + fT :

∂u1

∂t
+ u1 · ∇u1 = −∇

(p1
ρ1

)
− F, (47)

∂u2

∂t
+ u2 · ∇u2 = −∇

(p2
ρ2

)
+

ν

ρ2
∇2u2 +

ρ1
ρ2

F. (48)

7.0 VARIATIONAL SOLVERS AND QUANTUM ANNEALERS

The last method to be outlined is based on variational optimization. Suppose we want to solve the conventional
CFD problem of simulating a Stokes flow by using a discretization solver such as Gauss-Seidel or Jacobi. The
problem reduces to solving for eigenvalues of the formAx = B using the HHL algorithm. It can also be solved
as an optimization problem. That is, we define a cost function such as the difference between the LHS and
RHS of the eigenvalue problem, and iterate and modify x so as to minimise the cost function to 0. Classical
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methods include algorithms such as gradient descent, steepest descent, conjugate gradient method, etc. Such
optimization procedures could be used for QC as well.

A. Variational Quantum Eigen (VQE) Solver. The idea stems from the principle of quantum mechanics for
solving the eigenvalue problems variationally. It is usually done as a hybrid of quantum and classical computing.
So far, VQE has been applied for different condensed matter and quantum chemistry problems, but it can be
extended to other problems as well. On a hybrid machine, the steps are noted below. Detailed descriptions can
be found in [33, 49, 69].

1. Consider a matrix P with one of its eigenvectors |ψp⟩. Then we know that the |ψp⟩ is invariant in the
sense of P |ψp⟩ = p|ψp⟩, where p is the corresponding eigenvalue. Let us regard P as a Hamiltonian,
which is a positive definite Hermitian matrix, with positive and real eigenvalues. Thus, the expectation
value of the Hamiltonian is ⟨ψ|H|ψ⟩ ≥ 0. The smallest eigenvalue pmin ≤ ⟨ψ|H|ψ⟩ corresponds to the
ground-state energy of the system(≥ 0), which can be estimated by Algorithm 2.

2. Thus while a QPU computes expectation values, the CPU runs an optimisation algorithm; together they
can be used to estimate the eigenvalue and ground state configurations.

More recently some classical algorithms have been developed that are inspired by the fundamental principles of
using quantum mechanics or computing to study fluid flows, which are further also translatable into an equiva-
lent quantum circuit. For instance [61], uses variational methods coupled with Matrix Product States(MPS) to
extract some features of the Navier-Stokes solutions.

B. Quantum Approximate Optimization Algorithms (QAOA): Generally, combinatorial optimization methods
may not be tractable with polynomial resources. Other than developing problem specific methods, approximate
algorithms such as QAOA can be handy. The goal is to take a discrete variable as an input, which could be
strings of binaries such as x = x1...xn, where xi ∈ {0, 1} defines a cost function E(x) that needs to be
maximized. The cost function is essentially a map from E(x) : {0, 1}n 7→ R. The QAOA [33, 49, 70] thus
forms the set of algorithms which does exactly this, and guarantees that the approximation ratio α satisfies

α =
E(x)

Emax
≥ αopt. (49)

C. Quantum Annealing: This method is now widely used to run on what are essentially known as Quantum
Annealer Machines (which in essence are not quantum computers) such as those produced by companies such
as DWave. The physical principle here is to use the quantum analogue of simulated annealing that one uses to
solve optimization problems in classical physics, but the phenomena of quantum tunnelling sets the quantum
version apart from the classical one. This phenomena is exploited for scanning fast through different minima
of a given energy landscape of a cost function. In the classical Monte Carlo, one would have to thermally
excite the system to jump the energy barrier to the next minimum, while in the quantum case, even with tall
energy barriers and with a certain thin barrier width, one can ”tunnel” to the adjacent minimum as shown
schematically in Figure 18. bThe DWave system does exactly this. With a combination of quantum tunnelling,
quantum entanglement and a transverse field bias, it can perform quantum annealing efficiently [64, 71] and
find optimal solutions via minimization. This has already been put to use to study the Navier-Stokes channel
flow [72]. In this work, one first converts the NS equation into a discretized version and sets up the problem as
an Ax = B eigenvalue problem as usual. Later, this is numerically investigated by converting the problem into
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Algorithm 2: Variational Quantum Eigenvalue Solver
Input: H, |ψ(k)⟩,k(parameter), ϵ(tolerance)
Output: |ψ(k)⟩opt,Eopt

1 Function VQE(H, |ψ(k)⟩,k, ϵ):
2 INITIALISE(|ψ(k)⟩)
3 (Can also use U3(k) gates (Eqn. 19) for parametrisation)
4 while ( pmin ≤ ϵ && P |ψ(k)⟩ == pmin|ψ(k)⟩ ≈ p|ψp⟩)) do
5 Eopt = ⟨ψ|H|ψ⟩ (ground state energy estimate)
6 |ψ(k)⟩opt = |ψ(k)⟩ = CLASSICAL OPTIMISER(|ψ(k)⟩)
7 return |ψ(k)⟩opt,Eopt
8 Function CLASSICAL OPTIMISER(|ψ(k)⟩):
9 Optimise |ψ(k)⟩ based on parameter k on a CPU

10 return |ψ(k)⟩opt

Figure 18: Quantum Annealing
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an optimization type setup called the Quantum Unconstrained Binary Optimisation (QUBO) supported by the
DWave machine.

In general, many variational and optimization type methods are already being used for commercial appli-
cations such as traffic flow management and finance management with very big quantum annealers such as
DWave which is offering 5000 qubits. Though the complexity estimates of these methods varies and is not
yet clearly established, it still offers a lucrative quantum protocol that can solve optimization problems with a
decent speedup.

8.0 QUANTUM PROGRAMMING AND MACHINES

Coming to the implementation and the actual execution of these ideas and algorithms, what we need are (a)
efficient quantum computer simulators to test the correctness of quantum algorithms, and (b) real quantum
computing devices to execute and assess the quantum advantage of practical QCs. There are now a large and
growing number of efforts that have already built, and are trying to build, better quantum computers. Each
of these QCs is being implemented using different quantum physical realizations and quantum materials that
would be robust against external noise and decoherence, called Quantum Processing Units (QPU) or Quantum
Processors. Given a QPU, the process of programming a set of quantum algorithms and converting them into
forms understandable by a quantum machine, using instructions of suitable programming languages, is called
quantum programming.

The different programming languages, though seemingly similar, vary in terms of instruction sets and the
actual physics governing the operation of the QC. Different quantum programming methods and packages
are being developed by different QC companies. Concentrating on computational fluid dynamics, different
workstations ranging from simple PCs to massive supercomputers have been used. Similarly, the currently
available quantum devices and programming packages are summarized in Figure 19. Each of these available
quantum programming kits have their own strengths and weaknesses; for instance, certain devices are better set
for optimization type problems compared to others.
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Figure 19: Different QCs and Architectures
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Part III

Introducing QuOn - A Quantum Simulator and
Quantum Linear System Algorithms
9.0 QUON - A HIGH PERFORMANCE QUANTUM SIMULATOR

Parallel to experimental implementations on real quantum devices, the key to advancing QCFD is the avail-
ability of quantum simulators that let researchers create, tweak and test new algorithms. Here we introduce
a new quantum-simulation toolkit, aimed specifically for fluid dynamics applications, that can be used either
independently or as part of other code bases. This is a toolkit for a fluid dynamicist to build and explore the
new arena of QCFD [3]. We shall call this hybrid simulator (with its logo is given below). It brings together
classical CFD and QC as QuOn!1

9.1 The basic structure

Figure 19 captures several of the commercially available quantum simulation packages produced by a host
of companies. Quite apart from them, Quipper [74] is another Haskel based quantum compilation package.
However, all these tools are mostly general purpose quantum softwares. On the other hand, there are softwares
such as ANSYS and OpenFOAM for performing classical CFD simulations. Thus, the desire to have a single
dedicated quantum simulator, aimed particularly at solving CFD problems on quantum machines, motivated
the genesis of QuOn, which is a high performance quantum simulator based on a C++ core. With QuOn, one
can at present:

1. Create custom quantum state/wavefunction(s) with a chosen number of qubits, along with several
functions to probe different attributes of the quantum state at any instant during quantum simulation.

2. Compose quantum circuits or projects using a large library of quantum gates and assemble them with
custom circuit design to implement quantum algorithms.

3. Integrate classical CFD solvers such as finite difference, finite element methods written in any other
language (e.g., MATLAB, Python) and run them in hybrid mode with quantum subroutines.

1As an aside: “Quons” are a kind of mathematical quantum particles that violate fermionic and bosonic statistics, but their algebra
is somewhat in between the two, called as “quon-algebra” [73].
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4. Simulate and test these quantum algorithms by measuring the fidelity of quantum solutions with respect
to classical/analytical results.

5. Visualize quantum circuits and states graphically using our simplistic visualization kit.

6. Acquire and store quantum information into classical formats via appropriate state tomography tech-
niques.

7. Faster and easier parallelization than Python based tools.

8. Offers more control over fine details of the algorithm.

9. Portable (soon) to other supercomputing platforms and translatable to Qiskit instructions.

9.2 Features

Here, we take a look at its features in a bit more detail:

1. Qubits: Simulation capabilities range up to 20 qubits.

2. Quantum gates library: Hosts a vast library of 40+ quantum gates within the gates.cpp subroutine.

3. Circuit composer: The composer class within circuit.cpp lets a user create custom circuits invoking
different gates and also call in-built subroutines for:

(a) Gate decomposition: To decompose any given multi-control gates into simpler gate blocks using
methods such as Euler decomposition eulerdecomp.cpp and multi-CNOT decomposition.

(b) Unitary decomposition: To decompose a general n-by-n unitary matrix into 2-level unitaries which
can further be reduced to single qubit and CNOT gates using the unitary decomp.cpp.

(c) Visualize: To draw out the composed circuits for visualizing and verifying the constructions using
the visualiz.cpp.

4. Quantum State: The user can initialize arbitrary quantum states and extract different features:

(a) State preparation: As already mentioned in Section 6.1, this could be done in several ways. Here,
let us look at another method of amplitude loading called “Cosine-Sine Decomposition” (CSD) to
prepare a quantum state.

Cosine-Sine Decomposition (CSD): Suppose we wish to prepare a state |b⟩ = 1√
66
(2|0⟩+ 6|0⟩+

1|0⟩+5|0⟩), which could be the right hand side of an Ax = b problem. With CSD, we can create a
generic state |b⟩ ∈ R2n which is normalized to ||b|| = 1 by applying, successively, a set of rotation
gates whose parameters are pre-calculated into a binary tree shown in Figure 20. The binary tree
is calculated bottom-up, while its eventual implementation as a quantum circuit is done by the
top-down consideration of the tree. Let examine this in more detail:

i. The set of values that needs to be loaded populates level n along with their respective sign
information.

ii. To begin constructing the tree, starting at level n, we square and sum the values pair-wise at
each successive level as shown in Figure 20.
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Figure 20: Cosine-Sine Decomposition Binary Tree

iii. This is done until the vertex of the tree is reached which essentially needs to be = 1.0, since
the final quantum state is required to be normalized. For the example state |b⟩, the tree is
constructed as shown in Figure 21, where the normalization constant here is

√
66.

Figure 21: Cosine-Sine Decomposition for the example state
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Once the tree has been prepared, to implement it as a quantum circuit we follow these steps:

i. Start at level 1, with the required number of qubits (here n = 2 to store 2n = 4 values) all of
them set to |0⟩ to begin with,

|b⟩ = |0⟩ ⊗ |0⟩. (50)

ii. To reach level 2, we apply a rotation gate Ry(θ1) where θ1 = 2arccos
(√

Left Node
Right Node

)
, to the

first qubit, where the action of the rotation gate follows - Ry(2θ)|0⟩ = cos(θ)|0⟩ + sin(θ)|1⟩.
Therefore,

|b⟩ =
(√40

66
|0⟩+

√
26

66
|1⟩

)
⊗ |0⟩. (51)

Figure 22: CSD QuOn- Implementation
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iii. We then follow the same procedure for every level, at every node and apply appropriate Ry(θ)
gates to each qubit that has not been set, by conditioning the gate on the specific string of qubits
that are already set in the previous level. The sequence of operations would be as follows,

|0⟩ ⊗ |0⟩ →
(√40

66
|0⟩+

√
26

66
|1⟩

)
⊗ |0⟩, (52)

(√40

66
|0⟩+

√
26

66
|1⟩

)
⊗ |0⟩ →

√
4

66
|00⟩+

√
36

66
|01⟩+

√
26

66
|10⟩, (53)

√
4

66
|00⟩+

√
36

66
|01⟩+

√
26

66
|10⟩ →

√
4

66
|00⟩+

√
36

66
|01⟩+

√
1

66
|10⟩+

√
25

66
|01⟩. (54)

iv. Finally, based on the signs of the values to be stored, one can apply Z gates conditioned on its
corresponding basis state to flip the signs appropriately.

v. The complexity of this algorithm is O(2n), which is linear in the size of the vector being
loaded. An explicit CSD, data loading code on QuOn is shown in figures 22 and 23.

Figure 23: CSD QuOn- Implementation

The corresponding circuit that is generated by QuOn, upon running the above code, is shown in
Figure 24. However, the state thus produced by any quantum circuit as this, would need to be
measured to (a) store it in classical formats, and (b) check the correctness of our quantum circuit.
This draws us to the next feature – quantum state tomography.
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Figure 24: CSD QuOn- Circuit Visualization

(b) State Tomography: For almost all practical purposes of CFD simulations, one is interested in
extracting the full velocity field, which is stored as amplitudes of the superposition of quantum
basis states. This is done via quantum state tomography, whose general idea was described in
Section 6.3. In this aspect, QuOn is equipped with:

i. State Vector Simulation: Outputs only the ideal quantum state of the system, without any
probabilistic measurements. Though this is not in principle possible on a real device, this
feature helps users to design new algorithms by checking its correctness at any stage in the
circuit.

ii. Amplitude Estimation: To estimate the state’s quantum amplitudes, which are here assumed
to be all real numbers (which it is, for all CFD problems), QuOn implements the algorithm due
to [75]. Given a state |b⟩ = ∑2n

i bi|i⟩, with ||b|| = 1, up to a precision δ, estimates a b̄ such
that ||b− b̄|| ≤ 7δ, with a probability ≥ (1− 1

20.83n
) as follows:

A. Let m̂ = 36n2n

δ2
. First, prepare and measure |b⟩, m̂ times in the computational basis. We

obtain a probability distribution for each of the basis states |i⟩, with frequencies fi and
probabilities pi = fi

m̂ respectively. Thus the estimated amplitudes will be
√
pi due to

Born’s rule. However, we have in the process lost the sign information (see C)!
B. Measurement: QuOn uses a Monte Carlo type measurement statistics generator, similar to

the concept of shots in Qiskit, to sample the states’ amplitudes as described above, with a
capability of up to 20000 shots.

C. Sign Estimation: To estimate and recover the sign information, we append an auxiliary
qubit and then prepare a system such that

|ϕ⟩ = 1√
2

(
|0⟩ ⊗ (actual state) + |1⟩ ⊗ (estimated state without sign)

)
, (55)

|ϕ⟩ = 1√
2

(
|0⟩ ⊗

2n∑
i

bi|i⟩+ |1⟩ ⊗
2n∑
i

√
pi|i⟩

)
. (56)

Now applying a Hadamard gate on the first, auxiliary qubit,

|ϕ⟩ = 1

2

( 2n∑
i

(bi +
√
pi)|0⟩ ⊗ |i⟩ +

2n∑
i

(bi −
√
pi)|1⟩ ⊗ |i⟩

)
. (57)

Next, perform another set of m̂measurements on this state. IfF0 andF1 are the frequencies
of |0⟩⊗|i⟩ and |1⟩⊗|i⟩, respectively, and if F0 > 0.4pim̂, then the sign for all basis states,
sgni = 1; else, the sign for all states sgni = −1. Thus the final reconstructed state is given
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by

|b̄⟩ =
2n∑
i

sgni
√
pi (58)

Implementing the above with QuOn on our example state, with 20000 shots, we accurately
obtain an estimated state reconstruct, as shown in figures 25 and 26, which, respectively,
show the final state of the system and the histogram of the probability distribution for the
quantum amplitudes.

Figure 25: CSD QuOn- Measured State

Figure 26: CSD QuOn- Shots histogram

iii. State Characteristics: QuOn also lets the user query, at any point, other standard properties
of a quantum state such as the norm and density matrices that characterize a given state.

5. Algorithms for CFD: So far, the two important implementations being developed on QuOn to perform
CFD simulations are the Quantum Linear System Algorithm(QLSA - described in the next section) and
Variational Quantum Eigenvalue Solver(VQE). These algorithms along with standard CFD subroutines
such as finite difference, finite element methods etc, renders QuOn as a promising tool for hybrid QCFD
simulations. The package along with its documentation will be made public and open-source soon on
GitHub. It will come with detailed instructions on features, installation and demonstrations for those
interested in exploring this new arena of QCFD further. With this brief outline of QuOn, let us now
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examine some preliminary results that were obtained using QuOn along with Qiskit for an example CFD
problem.

10.0 QUANTUM LINEAR SYSTEM ALGORITHMS AND AN EXAMPLE

The initial motivation to implement QC was to be able to simulate Hamiltonian dynamics [76] of systems
governed by equations of the form dx⃗

dt = Ax⃗. More recently, a broader class of problems, which are a set of
linear equations of the formAx⃗ = b⃗, have been studied; this was initiated with the HHL algorithm [55], leading
to a new, broader class of algorithms called Quantum Linear System Algorithms [77]. In CFD, it is rather
common in most cases to numerically set up a flow problem, using a suitable finite element/difference/volume
method (FEM/FDM/FVM) that could eventually be reduced into solving an Ax⃗ = b⃗ problem. With the HHL
algorithm, assuming that a sparse matrix A and a quantum state b⃗ are already given to us, we can estimate a
solution to x⃗, within an error ϵ, with only an O(logN ) complexity, as compared to O(N ) of its best classical
counterpart, thus promising an exponential speed up. However it is important to note the several theoretical
caveats that one would need to address before reaching such a computational advantage [78]. We should
note that efforts are continually being made to address these caveats [79, 80]; the QLSA approach itself has
evolved greatly with time. For example, some efforts [81–83] have aimed at reducing the error complexity
from poly(1/ϵ) to poly(log(1/ϵ)) of the underlying Hamiltonian simulation scheme. Consequently, they lead
to improved QLSA solvers, catering to linear and nonlinear ODEs and PDEs using both finite element [59, 84–
86] and spectral schemes [77], with better performance compared to its ancestor, the HHL algorithm [55]. Here
we shall look at the HHL algorithm in more detail and invoke its operation to solve an example CFD problem.

10.1 The HHL Algorithm

Definition: Given a Hermitian and invertible matrix A ∈ C2n×2n , a vector b ∈ C2n and a prescribed precision
of ϵ > 0, HHL computes a solution x such that |||x⟩ − |A−1b⟩|| ≤ ϵ. For an s-sparse matrix of size N, the
classical run time scales as O(Nsκ log(1/ϵ)), where κ is the condition number and ϵ is the desired accuracy,
while the HHL offers a scaling of O(log(N)s2κ2/ϵ). (It is, however, important to note that it assumes that we
are given a Hermitian matrix along with oracles to prepare the matrix A and vector b “efficiently”.)

10.1.1 A simplified outline

1. The matrix equation is set up with qubit states as

A|x⟩ = |b⟩. (59)

2. Then spectrally decompose the matrix A in its eigen basis,

A =
N−1∑
j=0

λj |uj⟩⟨uj |, (60)

where uj is the eigenvector and λj is the jth eigenvalue.

3. The inverse of the matrix would be

A−1 =
N−1∑
j=0

λ−1
j |uj⟩⟨uj |. (61)
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4. If we now express the right hand side of equation 59 in the eigen basis of A as |b⟩ =
N−1∑
j=0

bj |uj⟩, we can

rewrite the action of A−1 on |b⟩ as

|x⟩ = A−1|b⟩ =
N−1∑
j=0

λ−1
j bj |uj⟩, (62)

which is the solution of the matrix equation.

|q0〉 = |0〉
|q1〉 = |0〉
|q2〉 = |0〉
|q3〉 = |0〉 Ry

step1

H

H

eiAt eiAt

IQFT

step2
Ry Ry

step3

QFT

e−iAt e−iAt

H

H

step4

Figure 27: 4 qubit HHL quantum circuit

In what follows, we shall look at the detailed algorithmic steps to implement this procedure, which forms the
working principle behind the construction of the quantum circuit of the HHL algorithm, shown in Figure 27.

10.1.2 The algorithm in a bit more detail

For this algorithm, we need a total of three quantum registers: the first register with nl qubits to store binary
representation of the eigen values of A. Also needed is a second register with nb qubits to store the solution,
where N = 2nb . Finally, we need a third register, which contains ancillary qubits that are used as scratch-pad
bits and are set to |0⟩ initially.

1. STEP 1: Use CSD to load data/RHS |b⟩ ∈ CN onto the qubit register 2 (q3),

|0⟩nb
→ |b⟩nb

. (63)

2. STEP 2: Now we apply the Quantum Phase Estimation (QPE) algorithm to Register 2 (q1−2). In short,
for a given linear operator U , if eiπθ is an eigenvalue, QPE basically estimates the phase angle θ in a
binary format |θ⟩nl

. Thus by using the following linear operator we obtain the transformation

U = eiAt :=
N−1∑
j=0

eiλjt|uj⟩⟨uj |. (64)

Now expressing it using the eigen basis representation of A, we can write the state of the system as

N−1∑
j=0

|bj⟩nb
|λj⟩nl

|uj⟩nb
, (65)

where |λj⟩nl
is the nl bit representation of λj .
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3. STEP 3: We concatenate an ancillary qubit (q0) and then apply a controlled rotation to it conditioned on
the eigenvalues λj . With C as a constant of our choice (such that C ≤ λmin) we get

N−1∑
j=0

|bj⟩nb
|λj⟩nl

|uj⟩nb

(√
1− C2

λ2j
|0⟩+ C

λj
|1⟩

)
. (66)

4. STEP 4: We apply an inverse operation QPE† on Register 2 to uncompute its values

N−1∑
j=0

|bj⟩nb
|0⟩nl
|uj⟩nb

(√
1− C2

λ2j
|0⟩+ C

λj
|1⟩

)
. (67)

5. STEP 5: Finally measuring the ancillary qubit, if the outcome is |1⟩, it denotes a success of the algorithm
and we are left with the state √√√√√ 1

N−1∑
j=0
|bj |2/|λj |2

N−1∑
j=0

Cbj
λj
|0⟩nl
|uj⟩nb

, (68)

where Cbj
λj

forms the solution to the matrix equation. However, if we fail (outcome = |0⟩), we repeat
starting from Step 1 until success is achieved.

10.2 An Example: 2D Hele-Shaw Flow

As an example, we consider the 2D steady, incompressible Hele-Shaw flow system. For this we use non-
dimensional flow parameters by scaling them with their natural scales: Length: x∗ = x∗/L̄; Time: t∗ = t∗/T̄ ;
Velocity: u∗ = u∗/Ū ; Body force: f∗ = f∗/F̄ ; and Pressure: p∗ = p∗/P̄ . Here, L̄ = D (diameter of the
pipe), P̄ = µŪ/L̄, Ū = Umax(centre line velocity) , T̄ = L̄/Ū and f̄ = µ/L̄T̄ , where µ is the viscosity. We
set L = 1, Pin = 200, Pout = 100, µ = 1, and ρ = 1. Using these factors and assuming body forces f = 0, we
can rewrite the Navier-Stokes equations in its non-dimensional form as

Re
(∂u∗

∂t
+ (u∗ · ∇)u∗

)
= −∇p∗ +∆u∗, (69)

where Re = (Ū L̄)/ν is the Reynolds number. We now transition to the Stokes limit by letting Re→ 0 which,
in practice, means D̄ → 0 as in micro-channel flows. Thus, dropping the * notation we obtain the governing
equations for the Hele-Shaw flow:

∆u−∇p = 0, (70)

∇ · u = 0. (71)

The set up and boundary conditions are shown for an example of 4 × 5 grid in Figure 28. The specific com-
bination of Dirichlet and Neumann boundary conditions chosen here represents the case of a developed flow
regime with a uniform pressure drop across the domain. To convert this problem into an Ax = b form, we first
decouple the velocity and pressure terms by taking a divergence of equation 70 as

∇ · (∆u−∇p) = 0. (72)
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Figure 28: Computational setup and boundary conditions

After a few rearrangements and employing equation 71, we obtain the decoupled equations

pxx + pyy = 0, (73)

uxx + uyy = px, (74)

vxx + vyy = py. (75)

Equations 73-75 are three Poisson equations that needs to be solved using HHL. To do this, we first dis-
cretize the system as seen in figure 28 by employing a central difference scheme (figure 29) for the Laplacian
operator as (for h = L/N ):

Figure 29: Central difference stencil

1- 44 STO-EN-AVT-377 



An Introduction to Algorithms in Quantum Computation of
Fluid Dynamics

∆u =
u(xi + h, yj) + u(xi, yj + h)− 4u(xi, yj) + u(xi − h, yj) + u(xi, yj − h)

h2
+ h.o.t (76)

The ordering of grid points here is lexicographic, i.e., we scan through the points first left to right and then
row-by-row moving bottom-up. This discretization of the system leads us to Laplacian matrices that are sparse
and tri-diagonal, with at most two other far diagonals having non-zero entries (this structure depends on the
order of discretization and boundary conditions). The resulting matrices generally have the form

A =



−4 0 · · · 2 · · · 0

0 −4 · · · . . .
...

...
. . .

2 · · · −4 · · · 2
...

. . . . . .
0 0 2 · · · −4


(77)

Finally, we set up the matrix equations corresponding to equations 72-24. Invoking the HHL algorithm on
QuOn and Qiskit, and inverting the matrix equations and consequently measuring them yields the velocity
field.

10.2.1 Numerical procedure

1. Load the values of the |b⟩ vector corresponding to the RHS of equations 72-74 of the matrix equation.
This can be done by amplitude loading methods such as CSD as described in Section 9.2. This has a
complexity ∼ O(N).

2. Construct the Laplacian matrix operators for equations 72-74. With this ready, we are in a position to
invoke the HHL algorithm to invert the matrix equations. For instance, this can be done on Qiskit as
seen in figures 30-33, which shows the Qiskit python script as well as the equivalent circuit generated.
(The description of the code construction on QuOn is skipped here for brevity. However, when the QuOn
package is released, users will have access to the source code.) This has complexity of O(log(N)s2κ2/ϵ).

3. Finally we use quantum state tomography procedure to extract the velocity solutions, with a complexity
of ∼ O(36n2

n

δ2
).

10.2.2 Results

The results for pressure and velocity solutions thus obtained from both Qiskit and QuOn simulations with 12
qubits are shown in Figures 34-37.

1. For the problem under consideration, a developed Poiseuille flow, an analytic solution is known. The
pressure solution is given by a linear pressure drop and the velocity being parabolic according to the
equations

P =
(pout − pin)

L
x+ pin) (78)

U =
0.5

µ

(pout − pin)
L

y(D − y). (79)
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Figure 30: HHL 1
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Figure 31: HHL 2
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Figure 32: HHL 3

Figure 33: HHL circuit implementation on IBMQ
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Figure 34: Pressure solution on Qiskit - Fidelity 96.8%

Figure 35: Velocity solution on Qiskit - Fidelity 90.51%
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Figure 36: Pressure solution on QuOn - Fidelity 99.99%

Figure 37: Velocity solution on QuOn - Fidelity 99.97%
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2. We observe that even with such limited grid size, the linear pressure profile and parabolic velocity profile
results qualitatively meet expectations.

3. The code on Qiskit is slightly more erroneous given that it fails to satisfy boundary conditions for the
velocity solutions, as shown in figure 35. Qiskit demonstrates a fidelity (compared to solutions from
classical solvers) of 96.8% and 90.51% for pressure and velocity solutions, respectively.

4. On the other hand, the QuOn solutions are more accurate and satisfy boundary conditions. QuOn demon-
strates a fidelity of 99.99% and 99.97% for pressure and velocity solutions, respectively.

With a short summary of the lectures, we shall discuss these results somewhat further, outlining the primary
obstacles that need to be addressed to make progress with QCFD, in the following section.

11.0 DISCUSSION AND CONCLUDING REMARKS

We have so far discussed and illustrated a selected collection of quantum methods and tools for QCFD simu-
lations. Most of these tools present at least a quadratic speedup, sometimes superpolynomial or exponential,
compared to their classical counterparts. This, in itself, is an incentive for the QCFD study. The existence of
commercially available QCs such as IBMQ provides an additional thrust to this effort. Let us highlight a few
noteworthy observations derived from the example problem that we solved.

1. Complexity: The fundamental HHL algorithm modified and implemented in an end-to-end fashion for
the Poiseuille flow problem, has an overall complexity of ∼ O(N2 log(N)s2κ2/ϵ). This complexity
is comparable with a Gauss-Jordan iteration which has a complexity of ∼ O(N3). Incorporating more
recent versions of QLSA [77] for even a fully non-linear governing equations, if implemented as quantum
circuits could provide an end-to-end complexity of ∼ O(N2polylog(Nsκ/ϵ), which forms the basis of
our ongoing efforts. There are, however, some caveats to which one needs to pay attention in order to
achieve even polynomial or exponential speed up.

2. Caveats

(a) Non-Hermitian matrices: The HHL algorithm is prescribed for Hermitian matrices only. However,
almost all matrices generated for CFD applications are non-Hermitian. This problem could be
circumvented by expanding the matrix into a hermitian matrix, as

Ã =

[
0 A
A† 0

]
(80)

This new hermitian matrix could be solved, by padding the RHS with 0’s as

Ãx = [b, 0]T (81)

which gives a solution [0, x]T . The first half of the vector could be truncated to obtain the solution.
(b) State preparation: One crucial problem that plagues almost all quantum algorithms is the cost of

preparing the initial quantum state. In most cases the depth of circuit grows exponentially with the
size of the vector which increases exponentially with the number of qubits needed to store it. This
is one reason the exponential speedup offered by HHL remains unrealized, as seen in the example
problem which has an overall complexity of ∼ O(N2 log(N)s2κ2/ϵ). Any effort that can bring
down the complexity of state preparation to sub-linear or logarithmic in vector size is critical for
applications.
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(c) State tomography: Another critical obstacle that compromises the speedup is measuring the final
state of the quantum system. Almost all CFD simulations would need us to extract the entire
velocity field, which has again a complexity of at least ∼ O(N). Added to this, the measurement
scheme itself induces a certain amount of error. In most parts, the development in this direction
is dictated by improvements on the hardware end of QC. One possible option could be, instead of
a tomography of the entire field, to measure a function of the velocity field such kinetic energy,
dissipation, etc., which is a one-shot measurement. If M is a Hermitian matrix corresponding to a
physical observable, the expectation value m could be measured from the final quantum state as

⟨m⟩ = ⟨u|M |u⟩ (82)

(d) Iterative schemes: Given that tomography is rather expensive for current applications, iterative
schemes and time marching problems will add an extra complexity to the overall algorithm.

(e) Matrix pre-conditioning: Since the QLSA algorithms have at least a linear dependence on the
condition number O(κ), it is also advisable to first pre-condition the matrix to reduce the depth of
quantum circuit generated.

(f) Eigenvalue range: The fundamental HHL algorithm is designed to solve matrix systems that has
eigen values ∈ [0, 1]. It is obvious that this is not the case for any arbitrary problem. However, as
shown in [85] and further implemented in QuOn, it seems to be a more optimal choice if the eigen-
values are transformed to lie ∈ [−1,− 1

κ ]U[ 1κ , 1]. It must be stressed that QuOn’s implementation
solves for all eigenvalues.

3. Nonlinearity: The next level of solving QCFD problems is to address nonlinear equations. There have
been several recent efforts [61, 86] in this direction. Further possible directions could stem from the
following ideas:

(a) Multiple copies: To compute nonlinear terms of quadratic or even higher orders, one could make
multiple copies of the velocity field [87] of it—though we are not allowed make copies of a quantum
state within the algorithm due to No Cloning Theorem—and store it as a quantum state of two qubits
- [u1, u2] ⊗ [u1, u2] = [u21, u1u2, u2u1, u

2
2]. This state encodes all possible second order terms.

Subsequently, algorithms would need to be designed to evolve the velocity field with the requisite
data encoding. However, this method is also known to suffer from certain scaling issues that needs
to be taken into account.

(b) Linearization and linear embedding: Where it is possible, linearize the problem using suitable
transformations (e.g., Cole-Hopf transformation in the case of Burgers equation) and then remap
the transformations back to the original form. Another direction would be to use linear embedding
techniques such Carlemann or Koopman linearization, where one embeds the nonlinearity in a
higher dimensional space to linearize the problem as in in [86]. However, it has also been shown in
the same work that such methods are amenable for only weakly nonlinear problems.

4. Error correction: We wish to bring to the reader’s attention that quantum error correction and deco-
herence reduction methods form a key field of study, whole scope is to reduce noise-related errors and
make QC codes more robust and accurate. Though this aspect was not discussed here, it forms another
critical obstacle in being able to do meaningful simulations. The QCFD algorithms should not only aim
at speedups but also should be hardware-aware and take into consideration the decoherence issues while
designing them.

1- 52 STO-EN-AVT-377 



An Introduction to Algorithms in Quantum Computation of
Fluid Dynamics

11.1 Summary

1. In Parts 1-2, we provided a brief introduction and motivated the need to transition from CFD to QCFD,
reviewed basic concepts of quantum computing and its principles.

2. We then discussed and listed a host of possible quantum algorithms that could be potential candidates for
QCFD simulations in both lattice and continuum methods.

3. In Part 3, we introduced a new high-performance quantum simulator QuOn and described its features.

4. Finally, we introduced a QLSA algorithm and discussed its implementation and results on both QuOn
and Qiskit.

5. The Key take away is that quantum algorithms are still in their nascent stage. There exist several fun-
damental obstacles and hence a dire need for clever algorithms that incorporate nonlinearities and error
corrections in order to progress QCFD on near-term quantum devices. We listed some potential methods.

In all, for fluid dynamicists, the onset of QC provides an exciting opportunity to study the subject in a
completely new way. Progress calls for familiarity with this new paradigm of computing, building and putting
together newer and existing quantum algorithms for QCFD solvers. Since we are still in the early stage, it
would be wise to perform hybrid computations, where some functions are done on a QPU with the others on
a CPU or GPU. Our intention here has been to motivate the pursuit of new directions of computational fluid
mechanics that have the potential of a huge impact.
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